skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Held, Alexander"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ATLAS experiment at CERN explores vast amounts of physics data to answer the most fundamental questions of the Universe.The prevalence of Python in scientific computing motivated ATLAS to adopt it for its data analysis workflows while enhancing users’ experience.This paper will describe to a broad audience how a large scientific collaboration leverages the power of the Scientific Python ecosystem to tackle domain-specific challenges and advance our understanding of the Cosmos.Through a simplified example of the renowned Higgs boson discovery, attendees will gain insights into the utilization of Python libraries to discriminate a signal in immersive noise, through tasks such as data cleaning, feature engineering, statistical interpretation and visualization at scale. 
    more » « less
  2. Biscarat, C.; Campana, S.; Hegner, B.; Roiser, S.; Rovelli, C.I.; Stewart, G.A. (Ed.)
    The cabinetry library provides a Python-based solution for building and steering binned template fits. It tightly integrates with the pythonic High Energy Physics ecosystem, and in particular with pyhf for statistical inference. cabinetry uses a declarative approach for building statistical models, with a JSON schema describing possible configuration choices. Model building instructions can additionally be provided via custom code, which is automatically executed when applicable at key steps of the workflow. The library implements interfaces for performing maximum likelihood fitting, upper parameter limit determination, and discovery significance calculation. cabinetry also provides a range of utilities to study and disseminate fit results. These include visualizations of the fit model and data, visualizations of template histograms and fit results, ranking of nuisance parameters by their impact, a goodness-of-fit calculation, and likelihood scans. The library takes a modular approach, allowing users to include some or all of its functionality in their workflow. 
    more » « less
  3. Doglioni, C.; Kim, D.; Stewart, G.A.; Silvestris, L.; Jackson, P.; Kamleh, W. (Ed.)
    An important part of the Large Hadron Collider (LHC) legacy will be precise limits on indirect effects of new physics, framed for instance in terms of an effective field theory. These measurements often involve many theory parameters and observables, which makes them challenging for traditional analysis methods. We discuss the underlying problem of “likelihood-free” inference and present powerful new analysis techniques that combine physics insights, statistical methods, and the power of machine learning. We have developed MadMiner, a new Python package that makes it straightforward to apply these techniques. In example LHC problems we show that the new approach lets us put stronger constraints on theory parameters than established methods, demonstrating its potential to improve the new physics reach of the LHC legacy measurements. While we present techniques optimized for particle physics, the likelihood-free inference formulation is much more general, and these ideas are part of a broader movement that is changing scientific inference in fields as diverse as cosmology, genetics, and epidemiology. 
    more » « less
  4. First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem. 
    more » « less
  5. The statistical models used to derive the results of experimental analyses are of incredible scientific value andare essential information for analysis preservation and reuse. In this paper, we make the scientific case for systematically publishing the full statistical models and discuss the technical developments that make this practical. By means of a variety of physics cases -including parton distribution functions, Higgs boson measurements, effective field theory interpretations, direct searches for new physics, heavy flavor physics, direct dark matter detection, world averages, and beyond the Standard Model global fits -we illustrate how detailed information on the statistical modelling can enhance the short- and long-term impact of experimental results. 
    more » « less
  6. Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules.During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb -1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector.Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2.It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiency of 99.85%.Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules. 
    more » « less